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Learning goals

At the end of this part of the tutorial, you should:

• be convinced of the importance of learning to rank from user interactions

• understand the most relevant algorithms in counterfactual/online learning to

rank

• be capable of deciding which type of learning to rank from user interaction

methods to use in which cases

• be able to contribute to further development of learning to rank from user

interactions.
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What are we going to do?

Part 1: Introduction

Part 2: Counterfactual Learning to Rank

Part 3: Online Learning to Rank

Part 4: Conclusion



Online Audience Questions

If you have any questions we want to hear them!

Tweet us at: @mdr @RolfJagerman or @HarrieOos and use #ltrtutorial

We will address your questions in a follow-up video.
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Part 1: Introduction



Part 1: Introduction

This part will cover the following topics:

• Supervised learning to rank from annotations.

• Limitations of learning to rank from annotated datasets

• Learning from user interactions

• Noise and bias.
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Learning to Rank



Learning to Rank

Learning to Rank (LTR) is:

“... the task to automatically construct a ranking model using training data, such

that the model can sort new objects according to their degrees of relevance,

preference, or importance.”

— Liu et al. (2009)

Learning to Rank is a core task in informational retrieval:

• Key component for search, recommendation, and digital assistants.
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Learning to Rank: Problem Definition

The ranking R of ranker fθ over a document set D is:

R = (R1, R2, R3, . . .)

where documents are ordered by their (descending) scores:

fθ(R1) ≥ fθ(R2) ≥ fθ(R3) ≥ . . . ,

and every document is in the ranking:

d ∈ D ⇐⇒ d ∈ R.
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Learning to Rank: Problem Definition

For this tutorial, we will cast the goal of LTR as:

• Find the parameters θ for the model fθ,

where sorting documents d according to their scores fθ(d)

results in the most optimal rankings.

We will later define what is optimal according to well-known ranking metrics.
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Supervised Learning to Rank



Supervised Learning to Rank: Setup

Supervised LTR methods require supervision from annotated datasets, these contain:

• Queries, representing queries users will issue,

• Documents, per query a preselected set of documents to be ranked,

• Relevance Labels, indicating relevance/preference per document-query pair.

Supervised LTR methods are commonly divided in three groups:

• Pointwise, Pairwise, and Listwise.
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Supervised Learning to Rank: Annotations

Relevance labels are gathered by human judges that annotate document-query pairs.

The resulting labels can be used for supervision during learning (Chapelle and Chang,

2011; Liu et al., 2007).

Let y(d) indicate the relevance of document d to the current query,

in this tutorial we never talk about the same document w.r.t. to multiple queries,

thus we can keep the query out of the notation y(d).
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Pointwise Methods

The pointwise approach casts LTR as the standard machine learning task of label

prediction, by using a classification or regression loss.

For instance, the mean squared error is a common regression loss:

Lpointwise =
1

N

N∑
i=1

(
fθ(di)− y(di)

)2
.
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Pointwise Methods: Problem

The issue with pointwise methods is that they ignore that model scores are used to

rank documents.

In other words:

• A pointwise loss only wants scores to be close to the labels,

• LTR only wants scores to result in the correct ordering.

In practice, pointwise methods compromise ordering to get scores closer to the labels.
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Pairwise Methods

The pairwise approach realizes that ordering is based on relative score differences.

It uses a loss based on pairs of documents with a difference in relevance (Joachims,

2002).

For instance, an (unnormalized) pairwise hinge-loss:

Lpairwise =
∑

y(di)>y(dj)

max
(

0, 1−
(
fθ(di)− fθ(dj)

))
.
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Pairwise Methods: Problem

The problem with the pairwise approach:

• every document pair is treated as equally important,

• often users care more about the top-10 than the top-100.

Thus pairwise methods may compromise quality in the top-10 to improve the ordering

in the tail of the top-100.
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Listwise Methods

The idea of listwise methods is to optimize ranking metrics directly.

However, metrics based on the rank function are not differentiable.

For instance, the Discounted Cumulative Gain metric:

DCG =

N∑
i=1

y(di)

log2(rank(di) + 1)
.

Problem: log2(rank(di) + 1) is not differentiable.
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Listwise Methods: Examples

Solutions to this problem:

• use probabilistic approximations of ranking:

e.g. ListNet (Cao et al., 2007), ListMLE (Xia et al., 2008),

• use heuristics or bounds on metrics:

e.g. LambdaRank (Burges, 2010), LambdaLoss (Wang et al., 2018c).

For instance, the LambdaRank loss is a proven bound on DCG:

LLambdaRank =
∑

y(di)>y(dj)

log
(

1 + efθ(dj)−fθ(di)
)
· |∆DCG|.
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Limitations of Annotated Datasets



Learning to Rank from Annotated Datasets

Traditionally, learning to rank is supervised through annotated datasets:

• Relevance annotations for query-document pairs provided by human judges.

However, over time several limitations of this approach have become apparent.
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Limitations of the Annotated Datasets

Some of the most substantial limitations of annotated datasets are:

• expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).

• unethical to create in privacy-sensitive settings (Wang et al., 2016a).

• impossible for small scale problems, e.g., personalization.

• stationary, cannot capture future changes in relevancy (Lefortier et al., 2014).

• not necessarily aligned with actual user preferences (Sanderson, 2010),

i.e., annotators and users often disagree.
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Limitations of the Supervised Approach

Annotated datasets are valuable and have an important place in research and

development.

However, the supervised approach is:

• Unavailable for practitioners without a considerable budget.

• Impossible for certain ranking problems.

• Often misaligned with true user preferences.

Therefore, there is a need for an alternative learning to rank approach.
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Part 2: Counterfactual Learning to

Rank



Part 2: Counterfactual Learning to Rank

This part will cover the following topics:

• Counterfactual Evaluation

• Evaluating unbiasedly from historical interactions.

• Propensity-weighted LTR

• Learning unbiasedly from historical interactions.

• Estimating Position Bias

• Practical Considerations

• Related Work: Click Models
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Counterfactual Evaluation



Counterfactual Evaluation: Introduction

Evaluation is incredibly important before deploying a ranking system.

However, with the limitations of annotated datasets,

can we evaluate a ranker without deploying it or annotated data?

Counterfactual Evaluation:

Evaluate a new ranking function fθ using historical interaction data (e.g., clicks)

collected from a previously deployed ranking function fdeploy.
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Counterfactual Evaluation: Full Information

If we know the true relevance labels (y(di) for all i), we can compute any additive

linearly decomposable IR metric as:

∆(fθ, D, y) =
∑
di∈D

λ(rank(di | fθ, D)) · y(di),

where λ is a rank weighting function, e.g.,

Average Relevant Position ARP : λ(r) = r,

Discounted Cumulative Gain DCG : λ(r) =
1

log2(1 + r)
,

Precision at k Prec@k : λ(r) =
1[r ≤ k]

k
.
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Counterfactual Evaluation: Full Information

y(d1) = 1 Document d1

y(d2) = 0 Document d2

y(d3) = 0 Document d3

y(d4) = 1 Document d4

y(d5) = 0 Document d5
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Counterfactual Evaluation: Partial Information

We often do not know the true relevance labels y(di), but can only observe implicit

feedback in the form of, e.g., clicks:

• A click ci on document di is a biased and noisy indicator that di is relevant

• A missing click does not necessarily indicate non-relevance.
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Counterfactual Evaluation: Clicks

y(d1) = 1 Document d1 c1 = 1

y(d2) = 0 Document d2 c2 = 0

y(d3) = 0 Document d3 c3 = 1

y(d4) = 1 Document d4 /// c4 = 0

y(d5) = 0 Document d5 /// c5 = 0
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Counterfactual Evaluation: Clicks

Remember that there are many reasons why a click on a document may not occur:

• Relevance: the document may not be relevant.

• Observance: the user may not have examined the document.

• Miscellaneous: various random reasons why a user may not click.

Some of these reasons are considered to be:

• Noise: averaging over many clicks will remove their effect.

• Bias: averaging will not remove their effect.
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Counterfactual Evaluation: Examination User Model

If we only consider examination and relevance, a user click can be modelled by:

• The probability of document di being examined (oi = 1) in a ranking R:

P (oi = 1 | R, di).

• The probability of a click ci = 1 on di given its relevance y(di)) and whether it

was examined oi:

P (ci = 1 | oi, y(di)).

• Clicks only occur on examined documents, thus the probability of a click in

ranking R is:

P (ci = 1 ∧ oi = 1 | y(di), R) = P (ci = 1 | oi = 1, y(di)) · P (oi = 1 | R, di).
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Counterfactual Evaluation: Naive Estimator

A naive way to estimate is to assume clicks are a unbiased relevance signal:

∆NAIVE(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D)) · ci.

Even if no click noise is present: P (ci = 1 | oi = 1, y(di)) = y(di), this estimator is

biased by the examination probabilities:

Eo[∆NAIVE(fθ, D, c)] = Eo

 ∑
di:oi=1∧y(di)=1

λ(rank(di | fθ, D))


=

∑
di:y(di)=1

P (oi = 1 | R, di) · λ(rank(di | fθ, D)).
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Counterfactual Evaluation: Naive Estimator Bias

The biased estimator weights documents according to their examination

probabilities in the ranking R displayed during logging:

Eo[∆NAIVE(fθ, D, c)] =
∑

di:y(di)=1

P (oi = 1 | R, di) · λ(rank(di | fθ, D)).

In rankings, documents at higher ranks are more likely to be examined: position

bias.

Position bias causes logging-policy-confirming behavior:

• Documents displayed at higher ranks during logging are incorrectly considered

as more relevant.
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Inverse Propensity Scoring



Counterfactual Evaluation: Inverse Propensity Scoring

Counterfactual evaluation accounts for bias using Inverse Propensity Scoring (IPS):

∆IPS(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci,

where

• λ(rank(di | fθ, D)): (weighted) rank of document di by ranker fθ,

• ci: observed click on the document in the log,

• P (oi = 1 | R, di): examination probability of di in ranking R displayed during

logging.

This is an unbiased estimate of any additive linearly decomposable IR metric.
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Counterfactual Evaluation: Proof of Unbiasedness

If no click noise is present, this provides an unbiased estimate:

Eo[∆IPS(fθ, D, c)] = Eo

∑
di∈D

λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci


= Eo

 ∑
di:oi=1∧y(di)=1

λ(rank(di | fθ, D))

P (oi = 1 | R, di)


=

∑
di:y(di)=1

P (oi = 1 | R, di) · λ(rank(di | fθ, D))

P (oi = 1 | R, di)

=
∑
di∈D

λ(rank(di | fθ, D)) · y(di)

= ∆(fθ, D, y).

29



Counterfactual Evaluation: Robustness of Noise

So far we have no click noise: P (ci = 1 | oi = 1, y(di)) = y(di).

However, the IPS approach still works without these assumptions, as long as:

y(di) > y(dj)⇔ P (ci = 1 | oi = 1, y(di)) > P (cj = 1 | oj = 1, y(dj)).

Since we can prove relative differences are inferred unbiasedly:

Eo,c[∆IPS(fθ, D, c)] > Eo,c[∆IPS(fθ′ , D, c)]⇔ ∆(fθ, D) > ∆(fθ′ , D).
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Propensity-weighted Learning to Rank (LTR)

The inverse-propensity-scored estimator can unbiasedly estimate performance:

∆IPS(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci.

How do we optimize for this unbiased performance estimate?

• It is not differentiable.

• Common problem for all ranking metrics.
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Upper Bound on Rank

Rank-SVM (Joachims, 2002) optimizes the following differentiable upper bound:

rank(d | fθ, D) =
∑
d′∈R

1[fθ(d) ≤ fθ(d′)]

≤
∑
d′∈R

max(1− (fθ(d)− fθ(d′)), 0) = rank(d | fθ, D).

Alternative choices are possible, i.e., a sigmoid-like bound (with parameter σ):

rank(d | fθ, D) ≤
∑
d′∈R

log2(1 + exp−σ(fθ(d)−fθ(d
′))).

Commonly used for pairwise learning, LambdaMart (Burges, 2010), and

Lambdaloss (Wang et al., 2018c).
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Propensity-weighted LTR: Average Relevance Position

Then for the Average Relevance Position metric:

∆ARP(fθ, D, y) =
∑
di∈D

rank(di | fθ, D) · y(di).

This gives us an unbiased estimator and upper bound:

∆ARP-IPS(fθ, D, c) =
∑
di∈D

rank(di | fθ, D)

P (oi = 1 | R, di)
· ci

≤
∑
di∈D

rank(di | fθ, D)

P (oi = 1 | R, di)
· ci,

This upper bound is differentiable and optimizable by stochastic gradient descent

or Quadratic Programming, i.e., Rank-SVM (Joachims, 2006).
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Propensity-weighted LTR: Additive Metrics

A similar approach can be applied to additive metrics (Agarwal et al., 2019a).

If λ is a monotonically decreasing function:

x ≤ y ⇒ λ(x) ≥ λ(y),

then:

rank(d | ·) ≤ rank(d | ·)⇒ λ(rank(d | ·)) ≥ λ(rank(d | ·)).

This provides a lower bound, for instance for Discounted Cumulative Gain (DCG):

1

log2(1 + rank(d | ·))
≥ 1

log2(1 + rank(d | ·))
.
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Propensity-weighted LTR: Discounted Cumulative Gain

Then for the Discounted Cumulative Gain metric:

∆DCG(fθ, D, y) =
∑
di∈D

log2(1 + rank(di | fθ, D))−1 · y(di).

This gives us an unbiased estimator and lower bound:

∆DCG-IPS(fθ, D, c) =
∑
di∈D

log2(1 + rank(di | fθ, D)−1

P (oi = 1 | R, di)
· ci

≥
∑
di∈D

log2(1 + rank(di | fθ, D)−1

P (oi = 1 | R, di)
· ci.

This lower bound is differentiable and optimizable by stochastic gradient descent

or the Convex-Concave Procedure (Agarwal et al., 2019a).
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Propensity-weighted LTR: Walkthrough

Overview of the approach:

• Obtain a model of position bias.

• Acquire a large click-log.

• Then for every click in the log:

• Compute the propensity of the click:

P (oi = 1 | R, di).

• Calculate the gradient of the bound on the unbiased estimator:

∇θ
[
rank(di | fθ, D)

P (oi = 1 | R, di)

]
.

• Update the model fθ by adding/subtracting the gradient.
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Propensity-weighted LTR: Semi-synthetic Experiments

Unbiased LTR methods are commonly evaluated through semi-synthetic

experiments (Joachims, 2002; Agarwal et al., 2019a; Jagerman et al., 2019).

The experimental setup:

• Traditional LTR dataset, e.g., Yahoo! Webscope (Chapelle and Chang, 2011).

• Simulate queries by uniform sampling from the dataset.

• Create a ranking according to a baseline ranker.

• Simulate clicks by modelling:

• Click Noise, e.g., 10% chance of clicking on a non-relevant document.

• Position Bias, e.g., P (oi = 1 | R, di) = 1
rank(d|R) .

• Hyper-parameter tuning by unbiased evaluation methods.
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Propensity-weighted LTR: Results
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Estimating Position Bias



Estimating Position Bias

So far we have seen how to:

• Perform Counterfactual Evaluation with unbiased estimators.

• Perform Counterfactual LTR by optimizing unbiased estimators.

At the core of these methods is the propensity score: P (oi = 1 | R, di), which helps to

remove bias from user interactions.

In this section, we will show how this propensity score can be estimated for a

specific kind of bias: position bias.
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Estimating Position Bias

Recall that position bias is a form of bias where higher positioned results are more

likely to be observed and therefore clicked.

Assumption: The observation probability only depends on the rank of a document:

P (oi = 1 | i).

The objective is now to estimate, for each rank i, the propensity P (oi = 1 | i).

This user model was first formalized by Craswell et al. (2008).

40



Estimating Position Bias

RandTop-n Algorithm:

Document d1

Document d2

Document d3

Document d4

Document d1

Document d2

Document d3

Document d4 Document d1

Document d2

Document d3

Document d4

Rank 1

Rank 2

Rank 3

Rank 4
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Estimating Position Bias

RandTop-n Algorithm:

1 Repeat:

• Randomly shuffle the top n items

• Record clicks

2 Aggregate clicks per rank

3 Normalize to obtain propensities pi ∝ P (oi | i)

Note: we only need propensities proportional to the true observation probability for

learning.
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Estimating Position Bias

Uniformly randomizing the top n results may negatively impacts users during data

logging.

There are various methods that minimize the impact to the user:

• RandPair: Choose a pivot rank k and only swap a random other document with

the document at this pivot rank (Joachims et al., 2017b).

• Interventional Sets: Exploit inherent “randomness” in data coming from

multiple rankers (e.g., A/B tests in production logs) (Agarwal et al., 2017).
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Intervention Harvesting

• As we have seen, to measure position bias, the most straightforward approach is

to perform randomization.

• Naturally, we want to avoid randomizing because this negatively affects the

end-user experience.

• Main idea: In real-world production systems many (randomized) interventions

take place due to A/B tests. Can we use these interventions instead?

• This approach is called intervention harvesting (Agarwal et al. (2017); Fang et al.

(2019); Agarwal et al. (2019c))
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Intervention Harvesting
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Intervention Harvesting
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Jointly Learning and Estimating

In the previous sections we have seen:

• Counterfactual ranker evaluation with unbiased estimators.

• Counterfactual LTR by optimizing unbiased estimators.

• Estimating propensity scores through randomization.

Instead of treating propensity estimation and unbiased learning to rank as two

separate tasks, recent work has explored jointly learning rankings and estimating

propensities.
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Jointly Learning and Estimating

Recall that the probability of a click can be decomposed as:

P (ci = 1 ∧ oi = 1 | y(di), R)︸ ︷︷ ︸
click probability

= P (ci = 1 | oi = 1, y(di))︸ ︷︷ ︸
relevance probability

· P (oi | R, di)︸ ︷︷ ︸
observation probability

.

In the previous sections we have seen that, if the observation probability is known,

we can find an unbiased estimate of relevance via IPS.
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Jointly Learning and Estimating

It is possible to jointly learn and estimate by iterating two steps:

1 Learn an optimal ranker given a correct propensity model:

P (ci = 1 | oi = 1, y(di))︸ ︷︷ ︸
relevance probability

=
P (ci = 1 ∧ oi = 1 | y(di), R)

P (oi | R, di)
.

2 Learn an optimal propensity model given a correct ranker:

P (oi | R, di)︸ ︷︷ ︸
observation probability

=
P (ci = 1 ∧ oi = 1 | y(di), R)

P (ci = 1 | oi = 1, y(di))
.
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Jointly Learning and Estimating

• Given an accurate model of relevance, it is possible to find an accurate

propensity model, and vice versa.

• This approach requires no randomization.

• Recent work has solved this via either an Expectation-Maximization

approach (Wang et al. (2018b)) or a Dual Learning Objective (Ai et al.

(2018)).
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Addressing Trust Bias

In recent work Agarwal et al. (2019b) also address trust bias.

Trust bias:

• Users more often overestimate the relevance of higher ranked documents,

and more often underestimate the relevance of lower ranked documents

(Agarwal et al., 2019b; Joachims et al., 2017a).

Trust bias is related to position bias but involves more than just examination bias.

51



Modelling Trust Bias

Clicks are now modelled on the perceived relevance ỹ(di) instead of the actual

relevance y(di):

P (ci | di, R, y) = P (ỹ(di) = 1 | y(di), R) · P (oi = 1 | R, di).

Agarwal et al. (2019b) model the perceived relevance conditioned on the actual

relevance and display position rank(di, R) = k:

P (ỹ(di) = 1 | y(di) = 1, k) = ε+k ,

P (ỹ(di) = 1 | y(di) = 0, k) = ε−k .
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Correcting for Trust Bias

The new estimator becomes:

∆Bayes-IPS(fθ, D, c) =
∑
di∈D

P (y(di) = 1|ci = 1, k) · λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci

=
∑
di∈D

ε+k
ε+k + ε−k

· λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci.

The ε values can not be inferred through randomization experiments,

but can be estimated through EM-optimization.
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Disentangled Examination and Trust Bias

If trust bias is not modeled separately, then the estimated examination bias will be

affected by it. This may explain why the performance gains are somewhat limited.

Image credits: (Agarwal et al., 2019b). 54
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Practical Considerations

Practitioners of counterfactual LTR systems will run into the problem of high variance.

High variance can be due to many factors:

• Not enough training data

• Extreme position bias and very small propensity

• Large amounts of noisy clicks on documents with small propensity

The usual suspect is one or a few data points with extremely small propensity that

overpower the rest of the data set.
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Practical Considerations

A typical solution to high variance is to apply propensity clipping.

Propensity clipping: Bound the propensity, to prevent any single sample from

overpowering the rest of the data set:

∆Clipped-IPS(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D))

max{τ, P (oi = 1 | R, di)}
· ci.

This solution trades off bias for variance: it will introduce some amount of bias but

can substantially reduce variance.

Note that when τ = 1, we obtain the biased naive estimator.
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Practical Considerations
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Comparison to Supervised LTR

Supervised LTR:

• Uses manually annotated labels:

• expensive to create,

• impossible in many settings,

• often misaligned with actual user

preferences.

• Optimization is widely studied and

very effective w.r.t. evaluation on

annotated labels.

• Often unavailable for practitioners.

Counterfactual LTR:

• Uses click logs:

• available in abundant quantities,

• effectively no cost,

• contains noise and biases.

• Noise: amortized over large numbers of

clicks.

• Biases:

• position bias mitigated with inverse

propensity scoring.

• other biases are an active area of research.
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Related Work: Click Models



Click Models: Introduction

Click models form an established branch of IR research also related to learning from

user interactions (Chuklin et al., 2015).

The main goal of click models is:

• find a model that realistically simulates user behavior.

In practical terms this often means:

• learn to predict future interactions of users.
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Click Models: Rank-Biased Model

To realistically simulate user behavior click models have to capture the factors that

influence interactions. This includes:

• Estimates of the attractiveness of documents (relevance).

• Other factors that cause/prevent clicks (biases).

Click models can be used for bias estimation for counterfactual LTR,

i.e., previously discussed EM-based estimation is essentially the Position Biased Model

by Craswell et al. (2008).
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Click Models: Relevance Modelling

Click models often separately estimate attractiveness: P (ci = 1 | oi = 1, y(di)),

based on document features xi, i.e. with a learned function: m(xi) ∈ [0, 1].

In theory m can be used for unbiased evaluation,

in practice estimating relevance from features xi is not accurate enough.

In contrast, counterfactual evaluation does not rely on features, but uses a debiased

frequency-based estimate:

∆IPS(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci,
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Comparison to Click Models

Click Models:

• aims to realistically simulate user

behavior.

• models attractiveness and biases.

• can be used for feature-based

evaluation.

Counterfactual LTR:

• considers the effect of biases on the

learning objective.

• can be used for unbiased

frequency-based evaluation/learning.
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Conclusion of Part 2

So far we discussed:

• User interactions with rankings are very biased.

• Counterfactual Learning to Rank:

• Correct for position bias with inverse propensity scoring.

• Requires an explicit user model.

• Unbiased learning from historical interaction logs.

In the next two parts we will look at:

• Online Learning to Rank:

• Algorithms that directly interact with users.

• Handle biases through randomization.

• A comparison of both methodologies.
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Part 3: Online Learning to Rank



Online Learning to Rank: Overview

This part will cover the following topics:

• Online Evaluation

• Comparing rankers through interleaving.

• Dueling Bandit Gradient Descent

• Learning to rank as an interactive dueling bandit problem.

• Pairwise Differentiable Gradient Descent

• Learning to rank through unbiased pairwise optimization.

• Comparison of PDGD and DBGD

• Theoretical differences and empirical comparisons.
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Related Work: Bandits for Ranking



Ranking as a K-Armed Bandit

In the past, ranking has been modelled as a K-armed bandit (Busa-Fekete and

Hüllermeier, 2014).

These methods aim to find the optimal ranking for a single query.

Ranking bandit methods include:

• Upper confidence bounds on relevances per document (Kveton et al., 2015).

• Divide and conquer: split documents in groups so that there are high-confidence

relevance differences between groups (Lattimore et al., 2018).

• Click-through-rate estimation per document similar to counterfactual

LTR (Lagrée et al., 2016).
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Ranking Bandits and Learning to Rank

The goal of ranking bandit algorithms is:

• the optimal ranking for a single query.

The results from these algorithms do not generalize to other queries,

i.e., there is no resulting ranking model.

Advantage: rankings not limited by features (Zoghi et al., 2016).

Disadvantage: learning from scratch for every new query.

Very different from the goal of LTR as defined for this tutorial:

• to find a ranking model that generalizes well across user queries.
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Online Evaluation



Online Evaluation: Introduction

We have seen:

• Counterfactual evaluation corrects for position bias in historical logs

by explicitly modelling the user’s examination probabilities.

One way of getting these explicit probabilities is through randomization.

Alternatively, older methods use randomization to directly perform evaluation:

• A/B testing

• Interleaving

They answer the question: Should ranker A be preferred over ranker B?
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Online Evaluation: A/B testing

System A System B

A/B testing randomizes system exposure to users to measure differences.
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Online Evaluation: Interleaving

A/B testing is powerful and widely applicable, it is not specific for rankings.

Specific aspects of interactions in rankings can be used for more efficient

comparisons.

Interleaving (Joachims, 2003):

• Take the two rankings for a query from two rankers .

• Create an interleaved ranking, based on both rankings.

• Clicks on an interleaved ranking provide preference signals between rankers.
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Online Evaluation: Team-Draft Interleaving
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Online Evaluation: Interleaving

The idea behind interleaving:

• Randomize display positions of documents to deal with position bias.

• Limit randomization to maintain user experience.

Team-Draft Interleaving (Radlinski et al., 2008) is affected by position bias:

• Similar rankers can be inferred equal when a preference should be found.

Other interleaving methods are proven to be unbiased1:

• Probabilistic Interleaving (Hofmann et al., 2011)

• Optimized Interleaving (Radlinski and Craswell, 2013)
1Different definition of unbiased than the first part of this tutorial.
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Online Evaluation: Interleaving

Interleaving requires magnitudes fewer interactions for a reliable preference than

A/B testing (Chapelle et al., 2012; Yue et al., 2010).

Unlike counterfactual evaluation, interleaving is interactive.

• It is not effective on historical data (Hofmann et al., 2013).

Efficiency comes from:

• displaying the most important documents first,

• and looking for relative differences.

Providing a reliable, efficient and interactive evaluation methodology.
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Dueling Bandit Gradient Descent: Introduction

Introduced by Yue and Joachims (2009) as the first online learning to rank method.

Intuition:

• if online evaluation can tell us if a ranker is better than another,

then we can use it to find an improvement of our system.

By sampling model variants and comparing them with interleaving,

the gradient of a model w.r.t. user satisfaction can be estimated.
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Dueling Bandit Gradient Descent: Method

Start with the current ranking model parameters: θb.

Then indefinitely:

1 Wait for a user query.

2 Sample a random direction from the unit sphere: u, (thus |u| = 1).

3 Compute the candidate ranking model θc = θb + u, (thus |θb − θc| = 1).

4 Get the rankings of θb and θc.

5 Compare θb and θc using interleaving.

6 If θc wins the comparison:

• Update the current model: θb ← θb + η(θc − θb)
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Dueling Bandit Gradient Descent: Visualization
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Dueling Bandit Gradient Descent: Properties

Yue and Joachims (2009) prove that under the assumptions:

• There is a single optimal set of parameters: θ∗.

• The utility space w.r.t. θ is smooth,

i.e., small changes in θ lead to small changes in user experience.

Then Dueling Bandit Gradient Descent is proven to have a sublinear regret:

• The algorithm will eventually approximate the ideal model.

• The duration of time is effected by the number of parameters of the model, the

smoothness of the space, the unit chosen, etc.
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Dueling Bandit Gradient Descent: Visualization

Simulations based on offline datasets: user behavior is based on the annotations.

As a result, we can measure how close the model is getting to their satisfaction.
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Simulated results on the MSLR-WEB10k dataset,

a perfect user (left) and an informational user (right).

Image credits: (Oosterhuis, 2018). 77
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Reusing Historical Interactions

Hofmann et al. (2013) introduced the idea of guiding exploration by reusing

previous interactions.

Intuition: if previous interactions showed that a direction is unfruitful then we

should avoid it in the future.

Candidate Pre-Selection:

• Sample a large number of rankers to create a candidate set.

• Compare two candidate rankers based on a historical interaction.

• Remove loser from candidate set.

• Repeat until a single candidate is left.
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Reusing Historical Interactions: Performance

Simulated results on the NP2003 dataset.

Image credits: graph from (Hofmann et al., 2013). 79



Reusing Historical Interactions: Long Term Performance
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Simulated results on the NP2003 dataset.

Remember, in the online setting the performance cannot be measured,

thus early-stopping is unfeasible.

Image credits: graph from (Oosterhuis et al., 2016). 80



Reusing Historical Interactions: Other Work

Besides Hofmann et al. (2013) other work has also tried reusing historical

interactions for online learning to rank: (Zhao and King, 2016; Wang et al., 2018a).

The problem with these works is that:

• they do not consider the long-term convergence.

• they were not evaluated on the largest available industry datasets.

As a result, it is still unclear whether we can reliably reuse historical interactions

during online learning.
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Multileave Gradient Descent

The introduction of multileaving in online evaluation allowed for multiple rankers

being compared simultaneously from a single interaction.

A natural extension of Dueling Bandit Gradient Descent is to combine it with

multileaving, resulting in Multileave Gradient Descent (Schuth et al., 2016).

Multileaving allows comparisons with multiple candidate rankers,

increasing the chance of finding an improvement.
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Multileave Gradient Descent: Visualization
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Multileave Gradient Descent: Results

Results on the MSRL10k dataset under simulated users:
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Multileave Gradient Descent: Conclusion

Properties of Multileave Gradient Descent:

• Vastly speeds up the learning rate of Dueling Bandit Gradient Descent.

• Much better user experience.

• Instead of limiting (guiding) exploration, it is done more efficiently.

• Huge computational costs, large number of rankers have to be applied.
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Problems with Dueling Bandit Gradient Descent

A problem with Dueling Bandit Gradient Descent and all its extensions:

• Their performance at convergence is much worse than offline approaches,

even under ideal user interactions.
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DBGD problems: Empirical

Results on the MSRL10k dataset under simulated users:
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Problems with the Dueling Bandit Gradient Descent Bounds

Remember the regret of Dueling Bandit Gradient Descent made two assumptions:

• There is a single optimal model: θ∗.

• The utility space is smooth w.r.t. to the model weights θ.

These assumptions do not hold for all models that are used in practice (Oosterhuis

and de Rijke, 2019).

To prove this we use the fact that the utility u is scale invariant w.r.t. a ranking

function fθ(·):

∀θ, ∀α ∈ R>0, u(fθ(·)) = u(αfθ(·)).
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DBGD Assumptions: Single Optimal Model

First assumption: There is a single optimal model: θ∗.

For any linear or neural model:

• if θ∗ has the optimal performance,

• then θ′ = αθ has the same performance, (linear model)

or multiplying the final weight matrix with α, (neural model).

Therefore, there can never be a single optimal model θ∗.
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DBGD Assumptions: Smoothness

Second assumption: The utility space is smooth w.r.t. to the model weights θ:

∃L ∈ R, ∀(θa, θb) ∈ W, |u(θa)− u(θb)| < L‖θa − θb‖.

Since a linear model is scale invariant:

∀α ∈ R>0, |u(θa)− u(θb)| = |u(αθa)− u(αθb)|,
∀α ∈ R>0, ‖αθa − αθb‖ = α‖θa − θb‖.

Thus the smoothness assumption can be rewritten as:

∃L ∈ R, ∀α ∈ R>0, ∀(θa, θb) ∈ W, |u(θa)− u(θb)| < αL‖θa − θb‖.

This condition is impossible to be true (proof can be extended for neural networks).
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DBGD Assumptions: Smoothness Visualization

Intuition behind the smoothness problem for

linear ranking models:

• Every model in a line from the origin in any

direction is equivalent.

• Any sphere around the origin contains every

possible ranking modela.

• The distance between the best and the worst

model becomes infinitely small near the origin.

aExcept for the trivial random model on the origin.

Weight #1

Weight #2

Model #1

Model #2

91



DBGD Problems: Conclusion

Theoretical properties:

• Currently, no sound regret bounds proven.

Empirical observations:

• Methods do not approach optimal performance.

• Neural models have no advantage over linear models.

Possible solutions:

• Extend the algorithm (the last decade of research) or introduce new model.

• Find an approach different to the bandit approach.
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Pairwise Differentiable Gradient Descent

We recently introduced Pairwise Differentiable Gradient Descent (Oosterhuis and

de Rijke, 2018b):

• Very different from previous Online Learning to Rank methods,

that relied on sampling model variations similar to evolutionary approaches.

Intuition:

• A pairwise approach can be made unbiased, while being differentiable,

without relying on online evaluation method or the sampling of models.
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Plackett Luce Model

Pairwise Differentiable Gradient Descent optimizes a Plackett Luce ranking

model, this models a probabilistic distribution over documents.

With the ranking scoring model fθ(d) the distribution is:

P (d|D, θ) =
expfθ(d)∑

d′∈D expfθ(d′)
.

Confidence is explicitly modelled and exploration depends on the available

documents, thus it naturally varies per query and even within the ranking.
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Bias in Pairwise Inference

Similar to existing pairwise methods (Oosterhuis and de Rijke, 2017; Joachims, 2002),

Pairwise Differentiable Gradient Descent infers pairwise document preferences from

user clicks:

document 1

document 2

document 3

document 4

document 5

This approach is biased:

• Some preferences are more likely to be inferred due to position/selection bias.
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Reversed Pair Rankings

Let R∗(di, dj , R) be R but with the positions of di and dj swapped:

document 1

document 2

document 3

document 4

document 5

document 3

document 2

document 1

document 4

document 5

We assume:

• For a preference di � dj inferred from ranking R, if both are equally relevant

the opposite preference dj � di is equally likely to be inferred from R∗(di, dj , R).

Then scoring as if R and R∗ are equally likely to occur makes the gradient unbiased.
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Unbiasing the Pairwise Update

The ratio between the probability of the ranking and the reversed pair ranking

indicates the bias between the two directions:

ρ(di, dj , R) =
P (R∗(di, dj , R)|f,D)

P (R|f,D) + P (R∗(di, dj , R)|f,D)
.

We use this ratio to unbias the gradient estimation:

∇fθ(·) ≈
∑
di>cdj

ρ(di, dj , R)∇P (di � dj |D, θ).
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Unbiasedness of Pairwise Differentiable Gradient Descent

Under the reversed pair ranking assumption, we prove that the expected estimated

gradient can be written as:

E[∇fθ(·)] =
∑
di,dj

αij(f
′
θ(di)− f ′θ(dj)).

Where the weights αij will match the user preferences in expectation:

di =rel dj ⇔ αij = 0,

di >rel dj ⇔ αij > 0,

di <rel dj ⇔ αij < 0.

Thus the estimated gradient is unbiased w.r.t. document pair preferences.
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Pairwise Differentiable Gradient Descent: Method

Start with initial model θt, then indefinitely:

1 Wait for a user query.

2 Sample (without replacement) a ranking R from the document distribution:

P (d|D, θt) =
expfθt (d)∑

d′∈D expfθt (d
′)
.

3 Display the ranking R to the user.

4 Infer document preferences from the user clicks: c.

5 Update model according to the estimated (unbiased) gradient:

∇fθt(·) ≈
∑
di>cdj

ρ(di, dj , R)∇P (di � dj |D, θt).
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Pairwise Differentiable Gradient Descent: Visualization

UserDocument

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document Collection

100



Pairwise Differentiable Gradient Descent: Visualization

Query
UserDocument

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document Collection

100



Pairwise Differentiable Gradient Descent: Visualization

Query
UserDocument

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Learned Distribution

100



Pairwise Differentiable Gradient Descent: Visualization

Query
User

Document

Document

Document

Document

Displayed Results

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Learned Distribution

Sampling Documents

100



Pairwise Differentiable Gradient Descent: Visualization

Query
User

Document

Document

Document

Document

Displayed Results

Seeing/Interacting

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Learned Distribution

Sampling Documents

100



Pairwise Differentiable Gradient Descent: Visualization

Query
User

Document

Document

Document

Document

Displayed Results

Seeing/Interacting

Inferring
Pair Preferences

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Learned Distribution

Document

Document

Document

Document

Reversed Pair 
Rankings

Sampling Documents

100



Pairwise Differentiable Gradient Descent: Visualization
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Pairwise Differentiable Gradient Descent: Results Long Term
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Results of simulations on the MSLR-WEB10k dataset,

a perfect user (left) and an informational user (right).

Image credits: (Oosterhuis and de Rijke, 2018b). 101



Comparison of Online Methods



Empirical Comparison: Introduction

Recent most generalized comparison so far (Oosterhuis and de Rijke, 2019).

Simulations based on largest available industry datasets:

• MSLR-Web10k, Yahoo Webscope, Istella.

Simulated behavior ranging from:

• ideal: no noise, no position bias,

• extremely difficult: mostly noise, very high position bias.

Dueling Bandit Gradient Descent with an oracle instead of interleaving,

to see the maximum potential of better interleaving methods.
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Empirical Comparison: DBGD

0 2 · 105 4 · 105 6 · 105 8 · 105 106

iterations

0.30

0.35

0.40

0.45
ND

CG
DBGD
(perfect)

DBGD
(casc.)

DBGD
(non-casc.)

DBGD
(oracle)

Results of simulations on the MSLR-WEB10k dataset.
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Empirical Comparison: PDGD
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Empirical Comparison: All
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Empirical Comparison: Conclusion

Dueling Bandit Gradient Descent (DBGD):

• Unable to reach optimal performance in ideal settings.

• Strongly affected by noise and position bias.

Pairwise Differentiable Gradient Descent (PDGD):

• Capable of reaching optimal performance in ideal settings.

• Robust to noise and position bias.

• Considerably outperforms DBGD in all tested experimental settings.
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Theoretical Comparison

Dueling Bandit Based Approaches:

• Sublinear regret bounds proven,

unsound for ranking problems as commonly applied.

• Single update steps are as unbiased as its interleaving method.

The Differentiable Pairwise Based Approach:

• No regret bounds proven.

• Single update steps are unbiased w.r.t. pairwise document preferences.

For the common ranking problem, neither approach has a theoretical advantage.
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The Future for Online Learning to Rank

The theory for Online Learning to Rank is inadequate and needs re-evaluation.

The Dueling Bandit approach appears to be lacking for optimizing ranking systems.

Novel alternative approaches have high potential:

• Pairwise Differential Gradient Descent is a clear example.
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Comparison of Online LTR with Supervised LTR

Supervised LTR:

• Uses manually annotated labels.

• Optimization is a widely studied and

very effective w.r.t. evaluation on

annotated labels.

• Often unavailable for practitioners.

Online LTR:

• Learns from direct interaction:

• Debiases by randomization.

• Ineffective when applied to historical data.

• Unbiased w.r.t. pairwise preferences.

• Not guaranteed to be unbiased w.r.t.

ranking metrics.
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Part 4: Conclusion

This part will cover the following topics:

• Empirical comparison of methodologies

• Theoretical comparison of methodologies

• Conclusion

• Future directions for unbiased learning to rank
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Empirical Comparison

Single empirical comparison so far (Jagerman et al., 2019) was presented at

SIGIR’19.

Using the simulated setup common in unbiased learning to rank, we apply both

Inverse Propensity Scoring and Pairwise Differentiable Gradient Descent.

Then we examines the effects of the following factors:

• Number of interactions.

• Degree of interaction noise

(ratio between clicks on relevant and irrelevant documents).

• Degree of position bias.

• Presence of item-selection-bias, no clicks beyond rank ten.
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Empirical Comparison: Item-Selection-Bias
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Little interaction noise, no item-selection-bias (left) and at rank ten (right).

The effect of item-selection-bias is greater on the counterfactual method than on the

online method.

Image credits: (Jagerman et al., 2019). 110



Empirical Comparison: Interaction Noise
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Little interaction noise (left) and near-random interaction noise (right).

The effect of interaction noise is substantial on the counterfactual method

and very limited on the online method.

Image credits: (Jagerman et al., 2019). 111



Empirical Comparison: Conclusion

Counterfactual Learning to Rank:

• Slightly higher performance under:

• no item-selection-bias,

• little interaction noise.

• Very affected by high interaction

noise.

Online Learning to Rank:

• More reliable performance across

settings.

• Handles item-selection bias well.

• More robust to noise

Overall the empirical results suggest that Online Learning to Rank is more reliable.
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Theoretical Comparison: Counterfactual Learning to Rank

Counterfactual Learning to Rank:

• Explicitly models position bias.

• Proven to unbiasedly optimize ranking metrics,

given that position bias is modelled correctly.

• Can be applied interactively.

• Applicable to any historical interactions.
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Theoretical Comparison: Online Learning to Rank

Online Learning to Rank:

• Does not require explicit user model.

• Is not proven to unbiasedly optimize ranking metrics.

• Gradient proven unbiased w.r.t. pairwise document preferences.

• Only effective when applied interactively.

• Not applicable to all historical interactions.
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Theoretical Comparison: Conclusion

Counterfactual Learning to Rank:

• Explicit position bias model.

• Proven to unbiasedly optimize

ranking metrics.

• Can be interactive.

• Applicable to any historical

interactions.

Online Learning to Rank:

• No explicit user model.

• Not proven to unbiasedly optimize

ranking metrics.

• Only effective when interactive.

• Not applicable to all historical

interactions.

In theory Counterfactual Learning to Rank has all the advantageous properties.
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Conclusion

• Supervised approaches to learning to rank are limited.

• Annotations often disagree with user preferences.

• User interactions solve this problem but bring noise and biases.

• Counter-factual approaches allow for unbiased learning to rank:

• If an accurate user model can be learned, we can adjust for biases.

• Only uses randomization to infer a user model.

• Online approaches allow for unbiased and responsive learning to rank:

• Immediately adapt to user behavior.

• Perform randomization at each step, though limited.

• Empirically: Online methods appear to be more reliable.

• Theoretically: Counterfactual methods are much more advantageous.
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Reinforcement Learning

“Reinforcement learning is learning what to do – how to map situations to

actions – so as to maximize a numerical reward signal.

The learner is not told which actions to take, but instead must discover which

actions yield the most reward by trying them.

In the most interesting and challenging cases, actions may affect not only the

immediate reward but also the next situation and, through that, all

subsequent rewards.”

— Sutton and Barto (1998)

In contrast with supervised learning, both short and long-term rewards are

considered, and the rewards of actions have to be discovered by trying them.
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Reinforcement Learning for Ranking

Optimizing for long-terms effects seems very promising:

• for long-term user engagement, across multiple queries/recommendations.

• treat creating a single ranking as a planning problem:

• Diversity: does placing one document make others less necessary (Xia et al., 2017).

• Complex layouts: what should be displayed and in what form? (Wang et al., 2016b;

Oosterhuis and de Rijke, 2018a).

• Fairness: what does a ranking policy do to the marketplace? (Singh and Joachims,

2019).

However, ranking has difficulties that make reinforcement learning hard:

• Massive action space:

• all possible rankings over ofter enormous sets of items.

• reinforcement learning requires large amounts of data:

• initial exploration phase could ruin user experience.
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Existing and Future Work

We are not aware of any work that applies reinforcement learning to ranking in

practice.

Work that applies it to recommendation does exist.

To avoid the risky initial exploration phase, this work focuses on off-policy

learning (Chen et al., 2019).

This is a very active area of research:

• For example, at this conference: (Ma et al., 2020)
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Future Directions

• The best of both worlds:

• The robustness of the online methods.

• The theoretical properties of the counterfactual methodology.

• Possibly by using both an explicit user model and randomization during learning.

• Unbiased Learning to Rank for:

• Recommender systems (Schnabel et al., 2016).

• Personalized rankings in search or recommendation.

• Correcting for more biases:

• Presentation bias, a well known but unaddressed bias.

• Social biases (fair/ethical A.I.) especially when ranking people.
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Future Directions

Other areas to expand to:

• Beyond clicks:

• Can we learn from dwell time, conversion, purchases, watch-time, etc.

• Beyond ten blue links:

• Do methods still work in non-traditional displays? (Oosterhuis and de Rijke, 2018a).

• Are rankings relevant for interactions with virtual assistants?

• Beyond relevance:

• Can we optimize for aspects beside relevance: e.g., result diversity?

• Or long-term goals: e.g., reinforcement learning (Chen et al., 2019).

• Responsible A.I.:

• Can our algorithms guarantee to respect users during exploration?

• Can they explain and explicitly substantiate their learned behavior?
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Questions and Answers

Thank you for participating!
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Notation Used in the Slides i

Definition Notation Example

Query q –

Candidate documents D –

Document d ∈ D –

Ranking R (R1, R2, . . . , Rn)

Document at rank i Ri Ri = d

Relevance y : D → N y(d) = 2

Ranker model with weights θ fθ : D → R fθ(d) = 0.75

Click ci ∈ {0, 1} –

Observation oi ∈ {0, 1} –

Rank of d when fθ ranks D rank(d | fθ, D) rank(d | fθ, D) = 4
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Notation Used in the Slides ii

Differentiable upper bound on rank(d, | fθ, D) rank(d, | fθ, D) –

Average Relevant Position metric ARP –

Discounted Cumulative Gain metric DCG –

Precision at k metric Prec@k –

A performance measure or estimator ∆ –
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Resources i

• Tensorflow Learning to Rank, allows for inverse propensity scoring:

https://github.com/tensorflow/ranking

• Inverse Propensity Scored Rank-SVM:

https://www.cs.cornell.edu/people/tj/svm_light/svm_proprank.html

• Pairwise Differentiable Gradient Descent and Multileave Gradient Descent:

https://github.com/HarrieO/OnlineLearningToRank

• Data and code for comparing counterfactual and online learning to rank

http://github.com/rjagerman/sigir2019-user-interactions

• An older online learning to rank framework: Lerot

https://bitbucket.org/ilps/lerot/
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